Discriminant Analysis and Adaptive Wavelet Feature Selection for Statistical Object Detection

نویسندگان

  • Ying Zhu
  • Stuart C. Schwartz
چکیده

We utilize the discriminant analysis to select wavelet features for efficient object detection. The analysis applies to the Bayesian classifier and is extended to the case of boosting. Based on the error analysis under the Bayesian decision rule, we reduce the number of coefficients involved in detection to lower the computational cost. Using a Hidden Markov Tree (HMT) model to describe the pattern distributions, we introduce the concept of errorbound-tree (EBT) to relate feature selection to error reduction. The scheme selects discriminative features that are adaptive to the pattern and allows the detector to reach a decision faster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Local Discriminant Wavelet Packet Basis for Texture Classification

Wavelet packets are well-known for their ability to compactly represent textures consiting of oscillatory patterns such as fingerprints or striped cloth. In this paper, we report recent work on representing both periodic and granular types of texture using adaptive wavelet basis functions. The discrimination power of a wavelet packet subband can be defined as its ability to differentiate betwee...

متن کامل

Comparison of PCT and Fisher Discriminant Analysis for Texture Feature Selection

Feature selection methods are useful to obtain an optimal set from a larger set thereby eliminating redundancy in feature sets. In this paper, the popular methods of principal component transform and Fisher discriminant analysis are compared for texture feature selection. These features are constituted by wavelet features. The selection processes are judged on using the classification rate of a...

متن کامل

A Vision System for Horizon Tracking and Object Recognition for Micro Air Vehicles

In this paper, we develop a unified vision system for small-scale aircraft, known broadly as Micro Air Vehicles (MAVs), that not only addresses basic flight stability and control, but also enables more intelligent missions, such as ground object recognition and moving-object tracking. The proposed system defines a framework for real-time image feature extraction, horizon detection and sky/groun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002